晶須增韌機(jī)制主要表現(xiàn)為晶須拔出增韌晶須在外界負(fù)載作用下從基質(zhì)中拔出時(shí),因界面摩擦而消耗掉一部分外界負(fù)載能量,從而達(dá)到增韌目的,其增韌效果受晶須與界面滑動(dòng)阻力的影響
應(yīng)用晶須增韌補(bǔ)強(qiáng)、納米粉復(fù)合強(qiáng)化技術(shù)全面提高硬質(zhì)合金刀具材料的硬度、韌性等綜合性能,是硬質(zhì)合金刀具材料研究今后發(fā)展的重要方向。
1)晶須增韌補(bǔ)強(qiáng)技術(shù)
a.增韌機(jī)理
由于硬質(zhì)合金刀具材料的斷裂韌性欠佳,因此很難應(yīng)用于一些對(duì)刀具韌性要求較高的加工場(chǎng)合(如微型深孔鉆削等)。解決這一問題的一種有效方法是使用晶須增韌補(bǔ)強(qiáng)技術(shù)。
加入硬質(zhì)合金材料中的晶須能吸收裂紋擴(kuò)展的能量,吸收能量的大小則由晶須與基體的結(jié)合狀態(tài)決定。晶須增韌機(jī)制主要表現(xiàn)為:①晶須拔出增韌:晶須在外界負(fù)載作用下從基質(zhì)中拔出時(shí),因界面摩擦而消耗掉一部分外界負(fù)載能量,從而達(dá)到增韌目的,其增韌效果受晶須與界面滑動(dòng)阻力的影響。晶須與基體界面之間必須有足夠的結(jié)合力,以使外界負(fù)載能有效傳遞給晶須,但該結(jié)合力又不能太大,以便保持足夠的拔出長(zhǎng)度。②裂紋偏轉(zhuǎn)增韌:當(dāng)裂紋尖端遇到彈性模量大于基質(zhì)的第二相時(shí),裂紋將偏離原來的前進(jìn)方向,沿兩相界面或在基質(zhì)內(nèi)擴(kuò)展。由于裂紋的非平面斷裂比平面斷裂具有更大的斷裂表面,因此可吸收更多外界能量,從而起到增韌作用。在基質(zhì)內(nèi)加入高彈性模量的晶須或顆粒均可引起裂紋偏轉(zhuǎn)增韌機(jī)制。③晶須橋接增韌:當(dāng)基質(zhì)斷裂時(shí),晶須可承受外界載荷并在斷開的裂紋面之間起到橋梁連接作用。橋接的晶須可對(duì)基質(zhì)產(chǎn)生使裂紋閉合的力,消耗外界載荷做功,從而提高材料韌性。
b.晶須的選用及添加方式
目前常用的晶須材料主要有SiC、TiC、TiB2、Al2O3、MgO、氮化硼、莫來石等。但研究重點(diǎn)應(yīng)放在單晶SiC晶須材料上,這是由于SiC本身具有良好的抗熱震性以及纖維狀(針狀)SiC粉末體較易獲得。
SiC晶須的添加方式主要有兩種:①外加晶須方式:將一定量的SiC粉末加入以氧化物、氮化物等為基體的粉末材料中,通過制造加工獲得晶須增韌制品。這種方式目前使用較廣泛。②合成晶須方式:將粉末基體與SiO2、碳黑、燒結(jié)助劑等混合后,在一定溫度和壓力下合成SiCw晶須,然后通過制造加工獲得晶須增韌制品。這種方法目前尚在進(jìn)一步研究開發(fā)之中。一般選用SiCw晶須的直徑范圍為0.01——3μm,長(zhǎng)度范圍為0.1——300μm,晶須的長(zhǎng)徑比取值為10,SiCw晶須添加量為5%——40%。我國(guó)目前使用的SiCw晶須特性見表1。
c.晶須的取向與含量
晶須增韌硬質(zhì)合金材料熱壓成形后,晶須的分布呈現(xiàn)出明顯的方向性,在不同方向上因晶須取向不同而表現(xiàn)出不同的增韌效果。因此,在制造硬質(zhì)合金刀片時(shí)應(yīng)考慮晶須取向?qū)Φ毒咔邢餍阅艿挠绊憽4送猓琖C-Co-SiCw材料中的晶須含量不同,其增韌效果也有較大差異。如晶須含量過多,會(huì)因燒結(jié)困難而難以獲得致密度高的材料組織,從而影響硬質(zhì)合金材料強(qiáng)度;如晶須含量過少,則晶須增韌效果不明顯,材料斷裂韌性提高有限,晶須可能非但起不到增韌作用,反而成為多余夾雜物甚至缺陷源。因此,存在一個(gè)最佳晶須配比,按此配比添加晶須,不僅可獲得致密度高的材料,而且外載能通過界面?zhèn)鹘o晶須,有效實(shí)現(xiàn)晶須的增韌作用。為達(dá)此目的,應(yīng)根據(jù)刀具損壞方式的不同,分別優(yōu)選出具有不同晶須含量和不同晶須取向的WC-Co-SiCw刀具進(jìn)行切削加工,以充分實(shí)現(xiàn)這種刀具材料的增韌補(bǔ)強(qiáng)作用。